Skip navigation

Por: Roberth Paúl Bravo Castro

Las redes neuronales son una rama de la Inteligencia Artificial.

A finales del siglo 19 se logró una mayor claridad sobre el trabajo del cerebro debido a los trabajos de Ramón y Cajal en España y Sherrington en Inglaterra. El primero trabajó en la anatomía de las neuronas y el segundo en los puntos de conexión de las mismas o sinápsis.

En las redes neuronales el conocimiento se incorpora mediante el aprendizaje a partir de ejemplos.


Durante el verano de 1951, Minsky y Edmonds montaron la primera máquina de redes neuronales, compuesta básicamente de 300 tubos de vacío y un piloto automático de un bombardero B-24. Llamaron a su creación “Sharc”, se trataba nada menos que de una red de 40 neuronas artificiales que imitaban el cerebro de una rata.

La Red Neuronal

El sistema de neuronas biológico está compuesto por neuronas de entrada (censores) conectados a una compleja red de neuronas “calculadoras” (neuronas ocultas), las cuales, a su vez, están conectadas a las neuronas de salidas que controlan, por ejemplo, los músculos.

¿Cómo de trabaja con la Red Neuronal?

La figura siguiente describe el procedimiento para operar con redes neuronales. Originalmente la red neuronal no dispone de ningún tipo de conocimiento útil almacenado. Para que la red neuronal ejecute una tarea es preciso entrenarla, en terminología estadística diríamos que es necesario estimar los parámetros.

En realidad todo el procedimiento que vemos en la figura es estadístico: primero se selecciona un conjunto de datos, o patrones de aprendizaje en jerga neuronal. Después se desarrolla la arquitectura neuronal, número de neuronas, tipo de red. Por decirlo con otras palabras, se selecciona el modelo y el número de variables dependiente e independientes. Se procede a la fase de aprendizaje o estimación del modelo y a continuación se validan los resultados.

Problemas que tratan de resolver

Las redes neuronales tratan de resolver de forma eficiente problemas que pueden encuadrarse dentro de tres amplios grupos: optimización, reconocimiento y generalización. Estos tres tipos engloban un elevado número de situaciones, lo que hace que el campo de aplicación de las redes neuronales en la gestión empresarial sea muy amplio.

Topología: Consiste en la organización y disposición de las neuronas en la red formando capas o agrupaciones de neuronas. Los parámetros fundamentales de la red son: número de capas, número de neuronas por capa, grado de conectividad y tipo de conexión entre neuronas.

Mecanismo de Aprendizaje: El aprendizaje es el proceso por el cual una red neuronal modifica sus pesos en respuesta a una información de entrada. Los cambios que se producen durante la etapa de aprendizaje se reducen a la destrucción (el peso de la conexión toma el valor 0), modificación y creación (el peso de la conexión toma un valor distinto de 0) de conexiones entre las neuronas.

Tipo de asociación entre las informaciones de E/S: Las redes neuronales son sistemas que almacenan cierta información aprendida; esta se registra de forma distribuida en los pesos asociados a las conexiones entre neuronas. Hay que establecer cierta relación o asociación entre la información presentada a la red y la salida ofrecida por esta. Es lo que se conoce como memoria asociativa.

Representación de la Información de E/S

Redes contínuas: En un gran número de redes, tanto los datos de entrada como de salida son de naturaleza analógica (valores reales contínuos y normalmente normalizados, por lo que su valor absoluto será menor que la unidad). En este caso las funciones de activación de las neuronas serán también contínuas, del tipo lineal o sigmoidal.

Redes discretas: Por el contrario, otras redes sólo admiten valores discretos [0,1] a la entrada, generando también en la salida respuestas de tipo binario. La función de activación en este caso es del tipo escalón.

Redes híbridas: La información de entrada es contínua pero a la salida ofrecen información binaria.

BIBLIOGRAFÍA

http://www.une.edu.ve/electronica/neurona.htm

http://thales.cica.es/rd/Recursos/rd98/TecInfo/07/capitulo3.html

PEARSON, Aprendizaje automático: conceptos básicos y avanzados.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: